GOLDEN ENGINEERED 4 POST, 2 MOTOR SEA DRIVE BOAT LIFTS Double the Speed, Double the Strength. PILE SPACING CHART The boat center of gravity needs to be set in the center of the top beam | Lift Capacity | "1" Dimension | "2" Dimension | Recommended
Pile Diameters | | | | | | | | |---------------|---------------|---------------|-------------------------------|--|--|--|--|--|--|--| | Lb. | Ft. | Ft. | ln. | | | | | | | | | 5,000 | 11 | 10 | 8 | | | | | | | | | 7,500 | | 12 | | | | | | | | | | 10,000 | | | 10 | | | | | | | | | 12,000 | 12 | 12.5 | | | | | | | | | | 14,000 | '- | | | | | | | | | | | 16,000 | | 14 | | | | | | | | | | 20,000 | 14 | | | | | | | | | | | 24,000 | 16 | 16 | | | | | | | | | | 28.000 | 10 | | 12 | | | | | | | | STAINLESS STEEL PILING MOUNT BRACKETRECOMMENDED ATTACHMENT BASED ON BRACKET CONFIGURATION. VERIFY ADEQUACY BASED ON ACTUAL SITE CONDITIONS: 4-3/8" STAINLESS STEEL LAG SCREWS USED TO CONNECT THE BRACKETS TO THE PILING AND 2-3/8" STAINLESS STEEL CARRIAGE BOLTS USED TO CONNECT THE BRACKETS TO THE LIFT CHANNELS NOTE: THIS STRUCTURE HAS BEEN DESIGNED FOR LOADS ASSOCIATED WITH AN ULTIMATE WIND SPEED OF 180 MPH,EXPOSURE "D", RISK CATEGORY I, CALCULATED PER FLORIDA BUILDING CODE 8th EDITION, 2023, ASCE/SEI 7-22 AND ADM-2020. BOATS SHALL NOT BE STORED ON LIFTS DURING HIGH WIND EVENTS. IN GENERAL, PILING PENETRATION TO BE A MINIMUM OF 10' INTO THE SAND BOTTOM OR 5' INTO THE ROCK STRATA. SUB-SURFACE CONDITIONS CAN VARY GREATLY, THE CONTRACTOR SHALL VERIFY ALL PILE CAPACITIES. ALL PILINGS TO BE 2.5 C.C.A. PRESSURE TREATED WOOD. ALL STRUCTURAL MEMBERS TO BE 6061-T6 ALUMINUM. ## **SUMMARY OF DESIGN FEATURES** A B C D E F G H 1 J | LIFT CAPACITY | TOP BEAM CHANNEL
2 EACH
INCHES | CRADLE I-BEAM
2 EACH
INCHES | BUNK | CABLE SIZE
INCHES | CABLE
SPREAD
IN | GUIDE
POST
HGTH | BRGS | DRIVE
SHAFT | WINDER
DIA | MOTOR
HP
VOLTAGE | INCHES
OF LIFT
PER MIN | | | |---------------|---|--------------------------------------|------------------------------|------------------------------------|-----------------------------------|----------------------------------|--------------------|--------------------------------|------------------------------------|--------------------------------------|------------------------------------|-----------|-----------| | Lbs
5,000# | 4 H x .15
2 W x .23
141" OAL | 6 H x .19
4 W x .29
120" LGTH | 3x10x192 ROUGH 2x8x144 ROUGH | | 107.75 | | | | 2 - 3/4 HP
120V/20A
240V/10A | | | | | | 7,500# | 5 H x .15
2.25 W x .26
x 153" OAL | 6 H x .19
4 W x .29
144" LGTH | | элен | 4 - 5/16"
x15' ST ST
1 PART | 120.75 | | 80°.
EXTRUDED 6061-T6 ALUM. | 1-15/16" DIA.
SCH 40 GALV PIPE | ILE GROOVES | 2 - 1 HP
120V/28A
240V/14A | 108" | | | 10,000# | 6 H x .17
2.5 W x .29
x 153" OAL | 8 H x .23
5 W x .35
150" LGTH | | | | 116.75 | .08 | | | | 2 - 3/4 HP
120V/20A
240V/10A | | | | 12,000# | 7 H x .17
2.75 W x .29
x 153" OAL | 8 H x .25
5 W x .41
150" LGTH | | | 4 - 5/16"
x30' ST ST
2 PART | | | | | | 240V/10A | 20"
to | | | 14,000# | 7 H x .17
2.75 W x .29
x 153" OAL | 8 H x .25
5 W x .41
150" LGTH | | 2 PART | | | 2" H.D. EXTRUDED 6 | | /2" DIA
E W/ CAB | | 108" | | | | 16,000# | 8 H x .19
3 W x .35
x 153" OAL | 10 H x .25
6 W x .41
168" LGTH | | | | | | 6" DIA.
GALV PIPE | 3-1/2" DIA
ALUM PIPE W/ CABLE | 2 - 1 HP
120V/28A
240V/14A | | | | | 20,000# | 8 H x .25
3.75 W x .41
x 177 OAL | 10 H x .25
6 W x .41
192" LGTH | | 3x10x192 R0UG | 92 ROUGI | 4- 5/16"
x45' ST ST
3 PART | 127.75 | | 10 - 2" | 80 | SCH 80 A | | 21"
to | | 24,000# | 8 H x .25
3.75 W x .41
x 201 OAL | 10 H x .29
6 W x .50
192" LGTH | | | 3 PĀŔŤ | 151.75 | 120" | | 1-1
SCH | | | 54" | | | 28,000# | 10 H x .526
2.88 W x .437
x 206 OAL | 12 H x .29
7 W x .47
192" LGTH | | 4- 5/16"
x60' \$T \$T
4 PART | 150.3125 | | | | | 2 - 1-1/2 HF
120V/30A
240V/15A | 14"
to
54" | | |